Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Androl Urol ; 11(11): 1544-1554, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36507479

RESUMO

Background: Bladder cancer (BC) is the most common malignancy of the urinary tract in China, and the extent of tumor invasion negatively correlates with prognosis. The mechanism of tumor invasion in BC has been unclear until recent studies revealed the critical role of long noncoding RNAs (lncRNAs) in the proliferation and invasion of tumors. Several lncRNAs have been reported to be associated with pathogenesis in BC, but not specifically. Methods: We used a microarray to screen the candidate lncRNAs with different expressions in BC. The expression of the lncRNAs in BC tissues or cells was identified by reverse transcription polymerase chain reaction (RT-PCR) or quantitative real-time PCR (qRT-PCR), and their ectopic expressions were measured via transfection experiment. The function of the lncRNAs was investigated by flow cytometry, caspase-3 enzyme linked immunosorbent assay (ELISA), Cell Counting Kit-8 (CCK-8), wound healing, transwell and colony formation experiments in vitro and xenograft experiments in vivo. Results: We identified a novel sense lncRNA, NONHSAT070806, that was downregulated in BC tissues and cells and negatively correlated with level of tumor invasion in patients. Furthermore, overexpression of NONHSAT070806 induced apoptosis of T24 and 5637 cells, inhibited the proliferation, migration and invasion of BC cells, and attenuated the tumorigenesis of BC cells both in vitro and in vivo. Conclusions: NONHSAT070806 may act as a suppressor of BC and is a potential indicator of the invasiveness of BC.

2.
EBioMedicine ; 73: 103639, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34700283

RESUMO

BACKGROUND: Lung biopsy tissue samples can be used for infection detection and cancer diagnosis. Metagenomic next-generation sequencing (mNGS) has the potential to further improve diagnosis. METHODS: From July 2018 to May 2020, lung biopsy samples of 133 patients with suspected pulmonary infection or abnormal imaging findings were collected and subjected to clinical microbiological testing, Illumina and Nanopore sequencing to identify pathogens. The neural networks were pretrained by extracting features of human reads from 2,095 metagenomic next-generation sequencing results, and the human reads of lung biopsy samples were entered into the validated pipeline to predict the risk of cancer. FINDINGS: Based on the pathogen-cancer detection pipeline, the Illumina platform showed 77·6% sensitivity and 97·6% specificity compared to the composite reference standard for infection diagnosis. However, the Nanopore platform showed 34·7% sensitivity and 98·7% specificity. mNGS identified more fungi, which was confirmed by subsequent pathological examination. M. tuberculosis complex was weakly detected. For cancer detection, compared with histology, the Illumina platform showed 83·7% sensitivity and 97·6% specificity, diagnosing an additional 36 cancer patients, of whom half had abnormal imaging findings (pulmonary shadow, space-occupying lesions, or nodules). INTERPRETATION: For the first time, we have established a pipeline to simultaneously detect pathogens and cancer based on Illumina sequencing of lung biopsy tissue. This pipeline efficiently diagnosed cancer in patients with abnormal imaging findings. FUNDING: This work was supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.


Assuntos
Biópsia , Pneumopatias/diagnóstico , Pneumopatias/etiologia , Pulmão/patologia , Metagenômica , Neoplasias/complicações , Adulto , Idoso , Biópsia/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Adulto Jovem
3.
Front Immunol ; 12: 654649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868297

RESUMO

Extracellular traps released by neutrophils (NETs) are essential for the clearance of Pseudomonas aeruginosa. Alkaline protease (AprA) secreted by P. aeruginosa negatively correlates with clinical improvement. Moreover, anti-AprA in patients with cystic fibrosis (CF) can help identify patients with aggressive forms of chronic infection. However, the mechanism underlying the clinical outcomes remains unclear. We demonstrated that aprA deficiency in P. aeruginosa decreased the bacterial burden and reduced lung infection. AprA degraded NET components in vitro and in vivo but did not affect NET formation. Importantly, antibodies induced by AprA acted as an agonist and directly enhanced the degrading activities of AprA. Moreover, antisera from patients with P. aeruginosa infection exhibited antibody-dependent enhancement (ADE) similar to that of the antibodies we prepared. Our further investigations showed that the interaction between AprA and the specific antibodies might make the enzyme active sites better exposed, and subsequently enhance the recognition of substrates and accelerate the degradation. Our findings revealed that AprA secreted by P. aeruginosa may aggravate infection by destroying formed NETs, an effect that was further enhanced by its antibodies.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Endopeptidases/imunologia , Armadilhas Extracelulares/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Endopeptidases/genética , Endopeptidases/metabolismo , Armadilhas Extracelulares/enzimologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA